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1. Introduction

Given a Yang-Mills instanton configuration in terms of gauge fields in Euclidean 4 dimen-

sions, how can one extract concrete physical information of “geometry” of the instanton —

location, size, relative moduli, and so on? A basic strategy for this problem is to introduce

a probe and study how the probe looks at the instanton as a background geometry. For

example, introduction of a fundamental massless matter fermion provides us with possi-

ble Dirac zero modes. In fact, these modes are responsible for reconstructing the ADHM

data [1] of the instantons, which is called inverse ADHM construction [2]. Another probe

which we consider in this paper is a Higgs field φ in an adjoint representation, which ex-

periences the self-dual instanton as a background. When φ acquires a vacuum expectation

value (at the spatial infinity), there is a back-reaction to the instanton configurations.

However, if one adds a time direction by embedding the Euclidean Yang-Mills theory into

1+4 dimensions, then one can turn on an electric field Eµ ≡ F0µ to retain the instanton
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configuration intact: this is a supersymmetric dyonic instanton found by N. Lambert and

D. Tong [3], whose 1/4 BPS equations are defined by

Fµν = ∗Fµν , Dµφ = Eµ, D0φ = 0, (1.1)

with µ, ν = 1, 2, 3, 4. The solutions to these equations should also satisfy the Gauss’s law

DµEµ = ie [φ,D0φ]. The time-independent solution (∂0 = 0) is then obtained by A0 = −φ

where φ is determined by the Laplace equation

DµDµφ = 0 (1.2)

in the instanton background [3]. The dyonic instantons carry electric charges as well as

their instanton charges, as a result they have angular momenta via “Poynting vectors”.

The Higgs probe field φ manifests this interesting structure in its zero locus φ = 0. The

plot of the Higgs zero in the two instantons background with arbitrary electric charge [4]

forms a closed loop rather than just a collection of points. Higgs zero locus can be regarded

as the location of the instantons1 (as in the case of ’t Hooft-Polyakov monopoles), hence

this directly indicates that the instantons have angular momenta and are “running” along

the loop.

Among fruitful interplay between field theory solitons and D-branes in string theory,

Yang-Mills instantons have played the role of touchstones. The ADHM data of the in-

stantons has an interesting interpretation as the excitations on D0-branes sitting inside

D4-branes [5]2 (see figure 1). The D-brane interpretation of the dyonic instantons is a su-

pertube [7 – 9] connecting parallel (but separated) D4-branes (figure 2) [10].3 The charges,

masses and supersymmetries of the dyonic instantons can be identified consistently with

their D-brane counterparts. The supertube consists of a tubular D2-brane on which funda-

mental strings (F1) and D0-branes are bound, and from the perspective of D4-branes, they

appear as a monopole string, the electric charges and the usual instantons respectively. The

supertube preserves 1/4 of the supersymmetries maintained by the D4-branes, while the

dyonic instantons preserve 1/4 supersymmetries of the 1+4 dimensional super Yang-Mills

theory.

The supertubes have arbitrary cross-sections while keeping their stability and super-

symmetries, this is due to the fact that the D0-branes running along the D2-brane surface

keeps the shape of the cross-section against collapsing to a point. In other words, the ten-

sion of the tubular D2-brane is canceled out by the angular momentum, so the supertube

is stable without collapsing.

At this stage, the Higgs zero locus of the dyonic instantons may naturally be identified

with the cross-section of the supertubes [4]. To provide further evidence for such identifica-

tion, it is natural to ask whether the supertubes continue to exhibit its intrinsic properties

with additional inputs from its proposed field counterparts, the dyonic instantons. For

1In [4] the locus is interpreted as a monopole string.
2Recently, the inverse ADHM construction described above is shown to have physical interpretation in

terms of D-brane anti-D-brane annihilation [6].
3Some discussions on D-brane interpretation of the dyonic instantons are present in [11].
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Figure 1: D-brane representation of the

Yang-Mills instantons. The D0-branes (re-

solved by condensation of D0-D4 strings)

are sitting inside the parallel coincident D4-

branes.

Figure 2: A dyonic instanton. The D2-

brane supertube is suspended between two

parallel D4-branes.

example, it is well known that the angular momentum of the supertube is given by the

curve defining its cross-section [9]. In section 2 of this paper, we would like to show that,

by substituting the Higgs zero locus for the cross-section in the expression for supertube

angular momentum, such angular momentum is maximized at circular Higgs zero locus,

provided the electric charge Qe of the dyonic instanton is kept fixed. This specific property

for supertube was first demonstrated in the supergravity contexts [9], here we consider a

purely field theoretical calculations and formulate the analogous variational problem. This

in turns would require us to set up a dictionary between the conserved charges of dyonic

instantons and supertubes. We shall argue that this dictionary is crucial in giving consis-

tent interpretation between our field theory results and the known stringy properties of the

supertubes. In addition, we study a T-dual picture of this story in section 2.5, demonstrat-

ing that the momentum for the so called “D-helix” [13] (or its S-dual – “supercurve” [14])

has identical functional dependence on its shape as their field theory counterparts known

as “wavy instanton strings” [15]. This identification in fact is where such a dictionary is

at its clearest.

The identification of the Higgs zero locus with the supertube cross-section leads us to

an interesting correspondence: real algebraic curves ↔ Yang-Mills instantons. The Higgs

zero of the dyonic instantons serves as a bridge between these two concepts. Note that the

Higgs field does not spoil the original instanton configuration, because the second equation

in (1.1) does not cause a back-reaction to the first (self-dual) equation. In this sense the

Higgs field is a true probe, with a help of the electric field. The Higgs zero loci are given

by algebraic real curves which are defined as polynomial equations of spatial coordinates.

In section 3, we examine this intriguing correspondence. We shall see that the degree of

the algebraic curves is related to the instanton number, and the splitting property of the

curves is manifested physically by well-separated instantons.
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2. Maximization of angular momentum

2.1 Dyonic instantons and angular momentum

The dyonic instantons are BPS solutions of N = 2 super Yang-Mills(-Higgs) theory1 in

1+4 dimensions [3]. In view of the correspondence to the D-branes, we concentrate on

SU(2) gauge group provided by the two parallel D4-branes for simplicity. The Higgs zero

loci can form non-trivial loops when we have more than one instanton, and they appear as

the monopole strings in the 1+4 dimensions. A complete treatment of arbitrary instanton

numbers would require solving the intricate full ADHM constraints. However in this section

we shall focus on the case of two instantons where one can bypass such difficulties, and

we shall extensively utilize the results obtained by S. Kim and K. Lee [4]. They explicitly

solved the equations (1.1) using the ADHM method inspired by the Jackiw-Nohl-Rebbi

(JNR) ansatz [16],

Aµ(x) =
i

2
σaη̄a

µν∂ν log HJNR(x), HJNR(x) ≡
2∑

i=0

si

|yi|2
, (2.1)

where η̄a
µν is the anti-self-dual ’t Hooft tensor and yiµ ≡ xµ−aiµ. The parameters specifying

the instantons are the three scalar moduli s0, s1, s2 which are real and positive, while the

three position moduli are labeled as a0µ, a1µ, a2µ, where µ = 1, . . . , 4 labeling the four

spatial directions. Note that for two instantons, this ansatz has enough number of the

degrees of freedom to sweep the entire instanton moduli space. Without losing generality,

we can rotate the configuration and set ai1 = ai2 = 0 (i = 0, 1, 2). Other moduli of

the dyonic instanton are the spatially asymptotic values qaσa of the Higgs field φ. For

simplicity we consider the probe Higgs field with q1 = q2 = 0 which gives the Higgs zero

on the 3-4 plane and was considered in [4] in details:

φ(x)
∣∣
yi1=yi2=0

=
q3σ3

(s0 + s1 + s2)HJNR(x)

X(x)

|y0|2|y1|2|y2|2
. (2.2)

Here we have defined a polynomial function

X(x) ≡
2∑

i=0

(
s2
i |yi+1|2 + 2sisi+1yi ·yi+1 −

4 (yi×yi+1)
∑2

j=0(aj×aj+1)
∑2

j=0(sjsj+1)−1|aj−aj+1|2

)
|yi+2|2 , (2.3)

where ~yi ≡ ~x − ~ai are two dimensional vectors on the 3-4 plane, and the cross product is

defined as yi × yj ≡ yi3yj4 − yi4yj3.

Explicit solution (2.2) shows [4] that the Higgs zero locus is given by the following real

algebraic curve

X(x) = 0. (2.4)

1The dyonic instantons are also 1/2 BPS objects in theories with 8 supercharges.
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The electric charge of the dyonic instanton is given as

Qe = tr

∫
d4x ∂µ(Eµφ)

=
8π2(q3)2

(s0+s1+s2)2

{
2∑

i=0

sisi+1|ai − ai+1|2 −
4
∑2

i=0(ai × ai+1)
2

∑2
j=0(sjsj+1)−1|aj − aj+1|2

}
. (2.5)

One can obviously see that both X(x) = 0 and Qe are invariant under the overall scaling

of the scalar moduli si, which are defined projectively.

The identification between the supertube in string theory and dyonic instantons in

field theory naturally leads one to further identify the Higgs zero locus X = 0 with the

curve defining supertube cross-section. The ideal place to test such further identification

is to consider the angular momentum. According to [9], the angular momentum of the

supertube is given by

L =

∮ π

−π

dθ

(
x3

∂x4

∂θ
− x4

∂x3

∂θ

)
, (2.6)

where θ is the coordinate on the curve defining the cross-section. Suppose we made such

further identification between the curves in field theory and string theory. Once the ADHM

data (si, aiµ) is provided for the dyonic instanton, one can then compute X = 0 and obtain

the curve, and substitute this curve profile into (2.6) to compute the angular momentum

for the supertube. The idea here is that we pose a variational problem in field theory

which extremizes (2.6), with the dyonic instanton charges fixed. This is related to the

similar variational problem for the supertube in string theory, with the supertube charges

fixed [14]. Even though we are varying essentially the same integral (2.6), however these

two problems are not a priori identical, as the charges which we kept fixed in the field

theory and string theory can be different functionals of the curves. To show these two

problems can be identified, one has to propose some kind of dictionary which relates the

charges in these two theories, and we shall explain such dictionary further in the next

subsection 2.2. Conversely we shall see in section 2.4 that, for fixed electric charge Qe of

the dyonic instanton, the angular momentum (2.6) calculated from the Higgs zero locus is

maximized when it forms a circle, this provides strong evidence for such dictionary between

the charges.

To make the distinctions clear, one should first note that the definition (2.6) for the

supertube only captures the angular momentum along the Higgs zero locus given by (2.4),

and this generally differs from the usual field theoretical definition for the angular momen-

tum of dyonic instanton, which is given by a four dimensional integral [4, 17],2

L̃µν =

∫
d4x (xµT0ν − xνT0µ) (2.7)

with Tµν being the energy momentum tensor of the 1+4 dimensional Yang-Mills theory.

In the following, we shall first explain the proposed dictionary between charges in

more details. We then give the support for such dictionary by demonstrating that for

2See discussions in section 4.
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fixed Qe, the angular momentum for the supertube as defined by (2.6) is maximized when

the Higgs zero locus forms a circle. To do so, we derive in section 2.3 a condition for

X = 0 to give a circle in terms of the ADHM data of the instantons. In section 2.4,

we show that perturbations around the ADHM data giving the circle always decrease the

angular momentum. There we also present some numerical calculations. In addition, we

consider a more evident example of the dictionary between charges given in 2.5, where

D-helices/supercurves [13, 14] (embedded in two coincident D5-branes) are identified with

wavy instanton string solutions [15] in 1+5 dimensional SU(2) Yang-Mills theory. For this

case, the dictionary between the charges is completely proven.

2.2 Dictionary between supertubes and dyonic instantons

Here we would like to discuss further the dictionary mentioned earlier between the con-

served charges for the dyonic instantons and the supertubes. On one hand if we had

assumed such dictionary, then variational problem in field theory proposed earlier would

be identical to the one for the supertubes in string theory. On the other hand, our results

in section 2.4, which demonstrates that the angular momentum (2.6) calculated from the

Higgs zero locus maximizes at the circle for fixed dyonic instanton charges, can be regarded

as the supporting evidence for such dictionary.

First let us list the standard relations between the various parameters in string theory

and the 1+4 dimensional SU(2) Yang-Mills-Higgs theory. The distance between the D4-

branes, l, is related to the Higgs expectation value at asymptotic infinity,

l = 2πl2s · 2q3 (2.8)

with ls being the string length. The gauge coupling constant e in the Yang-Mills-Higgs

theory is related to the string coupling constant through the tension of the D4-brane as

1/e2 = (1/2)TD4(2πl2s)
2 which can be simplified as

e2 = 8π2lsgs . (2.9)

Consider the BPS equations (1.1), it describes a dyonic instanton whose energy is given

in terms of its charges [3]:

Edyonic =
8π2

e2
κ +

2

e2
Qe . (2.10)

Here κ is the instanton number, and Qe is the electric charge of the dyonic instanton given

in equation (2.5). This energy should be equal to that of the supertube. The supertube

is described as a configuration of D2-brane worldvolume theory, and the energy is just

given by the tension of the supertube (per unit length) times its length l (which equals the

distance between the two D4-branes),

Esupertube = l

∫ π

−π

dθ H. (2.11)

Here θ is the cylindrical coordinate parameterizing the cross-section of the supertube sur-

face, and H is the energy density of the supertube given in terms of a low energy D2-brane

– 6 –
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worldvolume theory. Using the decomposition of the Hamiltonian by the D-brane/F-string

charges given in [8],1 we arrive at the expression

Esupertube = l (TD0QD0 + 2πTF1QF1) . (2.12)

Here TF1 (QF1) and TD0 (QD0) are the tension (charge) of the F-strings and the D0-branes

respectively. Comparing (2.10) and (2.12), and using the standard relations (2.8) and (2.9),

we propose the dictionary

κ

q3
= 4πl2s QD0 , (2.13)

Qe

q3
= 16π3lsgsQF1 . (2.14)

Suppose the identifications (2.13) and (2.14) are valid, they would imply that fixing κ and

Qe for dyonic instantons corresponds precisely to keeping fixed the D0 and F1 charges

for the supertube, hence the two variational problems can be identified and the maximal

angular momentum occurs at the circular shape. Conversely, we will show in section 2.4

that angular momentum for the supertube (2.6) calculated from the Higgs zero locus is

maximized when it becomes circular, for given κ and Qe, this should then be interpreted

as a supporting evidence for the dictionary (2.13) and (2.14).

The identification (2.13) and (2.14) means not only that the values of the charges

are identical, but also that the charges are identical functionals of the curves which are

defined by the Higgs zero locus for the dyonic instantons and by the cross-section for the

supertubes. This is the main point of the present paper, so here we explain in details the

logic of our reasoning given briefly above.

The supertubes are described by the following fields on the D2-brane: the magnetic

field B(θ), the conjugate momentum Πz(θ) with respect to the gauge field, and the trans-

verse scalar field yµ(θ). The supertubes satisfy the relation

BΠz = TD2|y′µ(θ)|2. (2.15)

The charges are defined as QD0 = (1/2π)
∫

dθ B, QF1 = (1/2π)
∫

dθ Πz. Using reparame-

terization of θ, we may put the magnetic field constant. Through the equation (2.15), the

electric charge is dependent on the shape of the cross-section yµ(θ). Given the cross-section

yµ, we can define the angular momentum of the supertube Lsupertube as in (2.6), thus the

angular momentum is a functional of the cross-section, Lsupertube[yµ]. On the other hand,

for the dyonic instantons, the instanton number κ is fixed while the electric charge Qe is a

function of the ADHM data (si, ai). The Higgs zero locus is defined by the ADHM data,

so the curve xµ = x̂µ(θ) is given as a solution of X(si, ai, x) = 0. The angular momentum

L is defined by this x̂µ, as explained in section 2.1, so L is a functional of x̂µ, L = L[x̂µ].

Since the definition is the same as the supertube, we should note that the x̂µ dependence

in L is the same as the yµ dependence in Lsupertube.

From these precise definitions, the meaning of the “dictionary” (2.13) and (2.14) is

clear. The left hand side of (2.14) is a function of (si, ai) while the right hand side is a

1We use the notation given in [12]. The quantization of the charges is given by 2πQF1 ∈ Z and lQD0 ∈ Z.
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functional of yµ. Note that we can extract the information of the ADHM data (si, ai) from

the curve x̂µ, so implicitly Qe is a functional of the curve x̂µ. The proposed dictionary

means that, the functional dependence of the both sides are the same, if we identify the

curve x̂µ with the cross-section yµ. The result of section 2.4 will strongly support that this

is correct, since the variational problems in the two pictures exhibit the same property: the

angular momentum is maximized when the curve is circular. This in turn means that the

identification of the Higgs zero locus with the supertube cross-section, x̂µ = yµ, is correct.

2.3 Conditions for circular cross section

In this and next subsections, we shall show that the maximization of the supertube angular

momentum (2.6) computed from the Higgs zero locus X = 0 is achieved when the locus is

circular. First, let us study for which value of the ADHM data the curve X = 0 becomes

circular.

For the circular cross-section to appear, i.e. (x2
3 + x2

4) = r2
0, it is necessary for X to

take the following form

A(x2
3 + x2

4)
2 + B(x2

3 + x2
4) + C = 0 , (2.16)

that is a quadratic equation in (x2
3 +x2

4), the radius of the circle r0 is then given by the root

of this equation. Here we show that the Higgs zero locus (2.4) forms a circular shape (2.16)

with a unique set of the nine parameters (si, aiµ) (i = 0, 1, 2 and µ = 3, 4), up to the overall

scaling of si and the rotation around the origin x3 = x4 = 0.

Consider the most general fourth order polynomial for x3 and x4,

b4x
4
3 + b3x

3
3 + b2x

2
3 + b1x3 + c4x

4
4 + c3x

3
4 + c2x

2
4 + c1x4 + k

+d1x3x4 + d2x
2
3x

2
4 + f1x3x

2
4 + f2x

2
3x4 + h1x3x

3
4 + h2x

3
3x4 . (2.17)

Clearly by comparing (2.3) with (2.16) and (2.17), we seem to have more conditions than the

number of variables. However, X as defined in (2.3) belongs to a special subset of these

general polynomials, simple expansion can show that for X, the followings are satisfied

identically:

b4 = c4 =
1

2
d2 = (s0 + s1 + s2)

2 , b3 = f1 , c3 = f2 , h1 = h2 = 0 . (2.18)

We are left with precisely six conditions

b3 = 0 , c3 = 0 , d1 = 0 , b2 = c2 , b1 = 0 , c1 = 0 .

The first four conditions give rise to the following equations for ai3 and ai4:

a03(s1 + s2) + a13(s0 + s2) + a23(s0 + s1) = 0 , (2.19)

a04(s1 + s2) + a14(s0 + s2) + a24(s0 + s1) = 0 , (2.20)

s0(a13a24 + a14a23) + s1(a03a24 + a04a23) + s2(a03a14 + a04a13) = 0 , (2.21)

s0(a13a23 − a14a24) + s1(a03a23 − a04a24) + s2(a03a13 − a04a14) = 0 . (2.22)

– 8 –
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The first two equations are solved straightforwardly as

a03 =
− (a23(s0+s1) + a13(s0+s2))

(s1 + s2)
, a04 =

− (a24(s0+s1) + a14(s0+s2))

(s1 + s2)
. (2.23)

Then (2.21) is solved as

a13 =
−a23s1(a24(s0 + s1) + a14s2)

s2(a24s1 + a14(s0 + s2))
, (2.24)

where we have implicitly assumed that the denominator is non-vanishing. Using these we

solve (2.22) as

a23 = ±
√

s2

s0s1(s0 + s1 + s2)
(a24s1 + a14(s0 + s2)). (2.25)

We choose the negative sign in the right hand side of (2.25) for simplicity. The condition

b1 = 0 is then simplified to

(s0 + s2)(s0 + s1 − 2s2)a14 = (s0 + s1)(s0 + s2 − 2s1)a24. (2.26)

It is straightforward to show2 that this condition is compatible with the last equation

c1 = 0 with (2.23)–(2.25) only if s0 = s1 = s2. All the constraints are solved with this as

a03 = −a13 − a23 , a04 = −a24 − a14 , a13 = −a23
a14+2a24

a24+2a14
, a23 =

−(a24+2a14)√
3

.

Substituting these into X, we find

X

(s0)2
= 9(x2

3+x2
4)

2 + 4(a2
14+a14a24+a2

24)(x
2
3+x2

4) −
16

3
(a2

14+a14a24+a2
24)

2 (2.27)

which certainly gives a single circle.3 The example of the ADHM data given in [4],

s
(0)
0 = s

(0)
1 = s

(0)
2 = 1 , (a

(0)
03 , a

(0)
04 ) = (−R, 0) , (2.28)

(a
(0)
13 , a

(0)
14 ) = (R/2,−

√
3R/2) , (a

(0)
23 , a

(0)
24 ) = (R/2,

√
3R/2),

is a particular representative of our general solution.4 The example is the unique data

giving the circle, up to rotation around the origin and parallel transport on the 3-4 plane.

2To show this, the positivity of si is crucial. If any one of them becomes zero, the instanton number

reduces by one. And we exclude the possibility that the circle collapses to a point.
3If we choose the positive sign in (2.25), the reasoning is found to be the same except that we have

parity flipped constraints, ai3 ↔ −ai3.
4Note that the overall scaling of the parameters si doesn’t change anything, that is why we could fix

the overall normalization of si in (2.28).
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2.4 Maximization around circular profile

Let us study the perturbations from the circular Higgs zero found above and see how the

angular momentum (2.6) is maximized there. It is enough to consider the representa-

tive (2.28) according to the uniqueness shown in the previous subsection. The radius of

the circle is given by

r0 =

√√
13 − 1

6
R, (2.29)

thus the angular momentum for the configuration (2.28) is given by

L = 2πr2
0 = 2π

√
13 − 1

6
R2 =

√
13 − 1

48π

Qe

(q3)2
. (2.30)

In the last equation we have used the electric charge for this ADHM data, Qe =16π2(q3)2R2.

2.4.1 Showing the extremum

The small perturbations from the point (2.28) are given by

si ≡ 1 + δsi , ai3 ≡ a
(0)
i3 + Rδai3 , ai4 ≡ a

(0)
i4 + Rδai4 . (2.31)

Let us consider the first order in perturbation. We expand the function X around the

data (2.28). A straightforward calculation gives

X = X̂ + Xiδsi + RXi3δai3 + RXi4δai4 + O(δ2), (2.32)

where X̂ is the polynomial given in equation (2.27) and Xi,Xi3 and Xi4 are homogeneous

polynomials of (x3, x4, R), whose explicit expressions can be obtained easily (we don’t show

them here).

In solving X = 0, we may use the following parameterization for the coordinates x3

and x4:

x3 ≡ (r0 + Rδr(θ)) cos θ , x4 ≡ (r0 + Rδr(θ)) sin θ . (2.33)

The fluctuation of O(δr) coming from the substitution of this into X̂ is then given by

X̂ = 0 +

√
78(−1 +

√
13)R4δr + O((δr)2) . (2.34)

Therefore we may solve the equation X = 0 to derive the expression of the deformation of

the radius δr written in terms of the moduli deformation δs and δa as

δr(θ) =
− [Xiδsi + RXi3δai3 + RXi4δai4]x3=r0 cos θ, x4=r0 sin θ√

78(−1 +
√

13)R4
. (2.35)

With this, we can compute the angular momentum along the Higgs zero locus as5

L =

∫
dθ(r2

0 + 2r0Rδr + O((δr)2))

' 2πr2
0 −

π

3
(
√

13 − 1)R2

[−2

3
δa03 +

1

3
δa13 +

1√
3
δa14 +

1

3
δa23 +

1√
3
δa24

]
. (2.36)

5It is interesting to note that at this order the deformation δsi does not appear, somehow.
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We need to evaluate how the electric charge Qe responds to the perturbation. In other

words, keeping Qe fixed imposes a linear constraint among the deformation parameters. A

straightforward calculation then gives

Qe

(q3)216π2R2
= 1 +

−2

3
δa03 +

1

3
δa13 +

1√
3
δa14 +

1

3
δa23 +

1√
3
δa24 + O(δ2) ,

thus fixing the electric charge is equivalent to the constraint

δa03 =
1

2

[
δa13 +

√
3δa14 + δa23 +

√
3δa24

]
. (2.37)

Now it is obvious that the perturbation of Qe coincides with the perturbation of L (2.36).

This means that, if we fix the electric charge Qe, then the angular momentum does not

change at the first order perturbation. We showed that, for the angular momentum, (2.28)

is a stationary point in the moduli space. This is a strong evidence that the angular

momentum is maximized at the circular configuration (2.28). We shall demonstrate next

that this is indeed a local maximum, by considering the perturbation at second order.

2.4.2 Showing the maximum

We have nine moduli parameters (si, ai3, ai4) in general, these are too many variables

to analyze exactly at the second order in their perturbations. Thus, for simplicity, we

restrict ourselves to treat a subspace of the moduli space, and consider a more manageable

situation with only four parameters δa03, δa13, δa23 and δa04 while fixing all the others to

the values (2.28), to demonstrate the maximization of the angular momentum.

The variation of the electric charge Qe with respect to this perturbation is then

Qe

16π2(q3)2R2
= 1 +

1

3
(−2δa03+δa13+δa23) +

4

9

(
(δa03)

2+ (δa13)
2+ (δa23)

2+ (δa04)
2
)

−2

9

(
δa03δa13 + δa13δa23+δa23δa03−

√
3δa13δa04+

√
3δa23δa04

)
+O(δ3).

We want to fix the value of the electric charge Qe = 16π2R2(q3)2 which is given by (2.28).

This leads to a constraint which can be solved for δa23 up to this order, as6

δa23 = [2δa03 − δa13] +

[
−4(δa03)

2 − 4(δa13)
2 − 4

3
(δa04)

2

+ 8δa03δa13 +
4√
3
δa03δa04 −

4√
3
δa13δa04

]
+ O(δ3) .(2.38)

Let us next solve the condition X = 0 by using the parameterization (2.33). Plug-

ging the perturbed variables into the equation X = 0, we can express δr(θ) in terms of

δa03, δa13, δa04 and δa23, up to their second orders. The explicit expressions are not so

6Note that the first order constraint δa13 + δa23 = 2δa03 is as itself inconsistent with the second order

part of the constraint −4(δa03)
2 − 4(δa13)

2 − 4

3
(δa04)

2 + 8δa03δa13 + 4
√

3
δa03δa04 − 4

√

3
δa13δa04 = 0. One

should not solve the constraint order by order.
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illuminating, however the resultant angular momentum up to the second order takes a very

simple form

L = 2πr2
0 − 2πR2α

(
−
√

3δa03 +
√

3δa13 + δa04

)2
, α ≡ 137

√
13−132

132 · 32
(≈ 0.21) . (2.39)

Here we have eliminated δa23 by using (2.38). As expected, the first order terms are vanish-

ing and the coefficient of the second order is negative, −2πR2α. This is the corroboration

of our claim that (2.28) gives the unique maximum of the angular momentum.

It is not so easy to increase the number of perturbation parameters, thus we ana-

lyze here some other sets of parameters to illustrate the point. For the set (δa03, δa23,

δa04, δa14), the same procedures give the angular momentum

L = 2πr2
0 − 2πR2α

[(
−
√

3δa03 + δa04 − 2δa14

)2
+ 3 (δa14)

2

]
. (2.40)

For the set (δa03, δa23, δa14, δa24), we obtain

L = 2πr2
0 − 2πR2α

[(
−
√

3δa03 − 2δa14 + δa24

)2
+ 3 (δa14 − δa24)

2

]
. (2.41)

For the set (δa23, δa04, δa14, δa24), the angular momentum is of the form

L = 2πr2
0 − 2πR2α

[
(δa04 − 2δa14 + δa24)

2 + 3 (δa14 − δa24)
2
]
. (2.42)

In all cases, the angular momentum (2.6) is maximized at the circular Higgs zero lo-

cus (2.28).7

2.4.3 Numerical evaluation

Since the analytical evaluation is intricate, we turn to a numerical evaluation of the an-

gular momentum (2.6) for given ADHM data of the instantons. We find that, even if we

include perturbation of the parameters si in addition to aiµ, the angular momentum is still

maximized at the circular profile (2.28).

To illustrate the numerical simulations, here we present some peculiar examples of the

deformation to the circular profile. The most interesting property of the loops given by

the Higgs zero loci is that they split as one changes the ADHM data. See figure 3, · · · ,
figure 6. We have chosen a03 = −√

s0R and varied s0, while other variables are kept to

be (2.28). As before, we keep the electric charge fixed, which determines the parameter R.

For s0 = 1 which is (2.28), we have a circle, but as we increase the parameter s0, the circle

is deformed and splits into two loops, and the loops continuously shrink to vanishing size

7Note that the above four results (2.39), (2.40), (2.41) and (2.42) are consistent with each other. A

naive conjecture for the angular momentum with the perturbation of six parameters δai3 and δai4 around

the circular profile is then given by

L = 2πr
2

0 − 2πR
2
α

»

“

−
√

3δa03 +
√

3δa13 + δa04 − 2δa14 + δa24

”

2

+ 3 (δa14 − δa24)
2

–

where we have eliminated δa02 by using the condition to keep Qe fixed.
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Figure 3: s0 = 1.
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Figure 4: s0 = 4.
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Figure 5: s0 = 13.
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Figure 6: s0 = 25.

at large s0. The large s0 limit is identical to the ’t Hooft instanton, as seen in (2.1) and

discussed in [4].

The angular momenta (2.6) calculated from the Higgs zero loci are summarized in the

following table. One can immediately see that it is maximized at s0 = 1 of (2.28).1 The

cases with s0 < 1 show the maximization at s0 = 1, too, though we have not listed the

evaluated numerical values. The angular momenta in the table are measured in the unit

of Qe/(16π
2(q3)2).

s0 angular momentum

Figure 3 1 2.73 (= 2π(
√

13 − 1)/6)

Figure 4 4 2.47

Figure 5 13 1.38

Figure 6 25 0.57

2.5 Wavy instanton strings and supercurves/D-helices

To illustrate the dictionary given in section 2.2, here we study the IIB counterpart of the

supertube and the corresponding BPS soliton in Yang-Mills theory.2 We shall see that,

interestingly, in this case the dictionary can be proven as a functional of the curves.

When we take a T-duality along the axial direction of the supertube, we find a super

D-helix which is a helical D1-brane moving with the speed of light along its axis [13]. As

an example, let us consider a perfectly circular D-helix with radius R for definiteness (the

radius is defined as a trajectory projected on a plane perpendicular to the axis), which

is the T-dual of a perfectly circular supertube with the same radius. The Hamiltonian of

the super D-helix is given by H = TD1|B| + |Π|, where Π is the momentum of the D-helix

along the axis, and B is the slope of the D-string along the axis, namely the pitch of the

D-helix is given by 2πRB. The relation to the supertube is apparent: in view of (2.12),

the momentum corresponds to the F1 charge of the supertube, and the slope corresponds

to the D0-brane charge. The super D-helix satisfies
√

2πl4s gs|ΠB| = R, which means that

the speed of the D-helix along the axis is equal to the speed of light. By the T-duality, this

1The angular momentum is proportional to the area enclosed by the loops, as seen from the defini-

tion (2.6). One can observe that the area is in fact decreasing as one increases the parameter s0.
2Related calculations are found in [18].
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is equivalent to the equation E = ±1/2πl2s of the supertube. Moreover, the super D-helix

preserves a quarter of the bulk supersymmetries, which is the same as the supertube.

Supercurves formulated in [14] are the objects that are S-dual to the D-helices, and

there it was found that the supercurves, which are fundamental strings traveling with the

speed of light, allow arbitrary deformation of the shape as long as the speed is maintained,

which is analogous to the supertubes. The Hamiltonian is similar to the above,

H = TF1|Z ′(θ)| + |PZ(θ)| . (2.43)

Here Z(θ) is a scalar field on the worldsheet and specifies the location along the axis of

the supercurve, and we can choose the gauge Z ′ = 1 by using reparameterization of the

worldsheet coordinate3 θ. PZ is the momentum of the supercurve along the axis Z. The

shape of the supercurve projected onto the plane transverse to the Z direction is given by

the other scalar fields yµ(θ). The BPS equations of motion shows

PZ(θ) = TF1|y′µ(θ)|2 . (2.44)

As long as this relation is satisfied, yµ dependence in the Hamiltonian vanishes. This is

the reason why the supercurves allow almost arbitrary deformations.

It was further shown in [14] that, for fixed total momentum
∫
dθPZ of the periodic

supercurves, the angular momentum defined by yµ(θ) as in (2.6) is maximized when the

projected shape yµ of the supercurve is circular. This is consistent with the T-duality.

Since we can apply the same method for the D-helices, in the following we shall use the

notation of the supercurves.

In order to find a field theoretical counterpart of the super D-helix, let us consider a

T-duality of the situation at hand: a supertube suspended between two parallel D4-branes

as we considered for the dyonic instantons in this paper. Taking the T-duality along the

transverse direction of the D4-branes, we obtain the super D-helix embedded in coincident

two D5-branes. As the supertubes suspended between the D4-branes can be thought of as

the 1/4 BPS dyonic instantons in 1+4 dimensions from the D4-brane view point, the super

D-helix should be thought of as a 1/4 BPS soliton in a 1+5 dimensional Yang-Mills theory,

from the D5-brane view point. Such a 1/4 BPS soliton in 1+5 dimensions was found in [15]

as a solution of the 1/4 BPS equations

Fµν = ∗Fµν , Eµ = F5µ, E5 = 0, (2.45)

with the Gauss’s law DµEµ+D5E5 = 0 (µ, ν = 1, 2, 3, 4). The solution is called wavy instan-

ton strings, which extends along the x5 axis on which an electric wave runs with the speed

of light. The x5 direction is identified with the Z direction of the D-helices/supercurves.

Notice that all the BPS equations for the wavy instanton string (including the Gauss’s

law) and their solutions lead to those for the dyonic instantons by the dimensional reduction

∂5 = 0 and A5 = −φ [15]. The dimensional reduction can be naively thought of as

3In this subsection we regard θ as a dimensionful parameter, for our convenience. One can realize this

by a redefinition θ → θls.
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embodiment of the T-duality in field theories, analogous to the well-known dimensional

reduction from instantons (D4-D0 system) to monopoles (D3-D1 system).

The BPS equations (2.45) can be solved by choosing ∂0 = ∂5 and A0 = A5 in any

instanton background [15]. Namely, concrete solutions of the wavy instanton string can

be found by promoting the moduli parameters yµ for the center of the instantons to be

arbitrary functions of the combination x0 + x5 as [15]

Aµ = Ainst
µ

(
xµ − yµ(x0 + x5)

)
, A0 = A5 = −∂yµ

∂x0
Aµ . (2.46)

For example, a helical wavy instanton string with circular profile on the projected plane

can be obtained by choosing the particular functions

y3 = R cos

(
x0 + x5

RB

)
, y4 = R sin

(
x0 + x5

RB

)
, (2.47)

while y1, y2 are constants. This helical wavy instanton string has the radius R, its velocity

is the speed of right and its pitch is 2πRB, the same as the “circular” super D-helix

described above.

Obviously, the correspondence between the super D-helix and helical wavy instanton

string is more transparent than that between the supertubes and the dyonic instantons.

Here, we shall directly show that the momentum computed in the field theory language

has identical functional dependence on yµ as that of the supercurve PZ . This is a proof of

the dictionary analogous to the one proposed in the case of the dyonic instantons ↔ the

supertubes.

The Hamiltonian of the wavy instanton strings is given by

H =

∫
dx5

[
8π2

e2
κ +

2

e2

∫
d4x trF0µF5µ

]
. (2.48)

One can see the complete analogy with the dyonic instanton, (2.10). The second term

is the momentum along the x5 axis. In comparison to the supercurves/D-helices, the

Hamiltonian (2.43) shows that the dictionary is

8π2

e2
κ = TD1|Z ′| , 2

e2

∫
d4x trF0µF5µ = |PZ | . (2.49)

The first equation should be understood in the gauge Z ′ = 1 and with κ = 1, since we

consider a single D-helix/supercurve.

The Yang-Mills field strength for the single instanton is given by

F inst
µν =

ρ2

(|xµ|2 + ρ2)2
η̄a

µνσa. (2.50)

According to the solution (2.46), the location of the center of the wavy instanton string is

just given by xµ = yµ(x0 +x5). This is almost clear from the definition, but one can define

this location in a gauge invariant manner as a solution to the equations tr∂µ(FρσFρσ) = 0,
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for example.4 With this single instanton solution, let us evaluate the momentum given by

the second term of (2.48). From (2.46), it is straightforward to obtain

F0µ = F5µ = −∂yρ

∂x5
Fρµ . (2.51)

Therefore,
∫

d4x trF0µF5µ =
∂yρ

∂x5

∂yσ

∂x5

∫
d4x trF inst

ρµ F inst
σµ . (2.52)

Here we have made a shift xµ−yµ(x0 +x5) → xµ in the integral since it does not affect the

result. The integral can be evaluated with the BPST instanton (2.50), but we just need

the dependence on the indices,
∫

d4x trF inst
ρµ F inst

σµ = (const.) × η̄a
ρµη̄a

σµ = (const.) × δρσ . (2.53)

Thus we find
∫

d4x trF0µF5µ = (const.) ×
∣∣∣∣
∂yρ

∂x5

∣∣∣∣
2

. (2.54)

This is precisely what we have expected in (2.44), in the gauge dx5/dθ = Z ′ = 1. The

dictionary (2.49) is proven as a functional of the shape of the wavy instanton strings and

the supercurves/D-helices.

The virtue of this T-dual example, compared to the dyonic instantons, is that from the

first place, the wavy instanton string solution (2.46) includes the functional dependence

explicitly. However, the dimension reduction to dyonic instantons is not easy, and so far

there are only a limited number of solutions (such as periodic instantons) found to be

consistent with the explicit T-duality in string theory picture. It would be interesting

if the T-duality in field theories can be formulated more usefully, to provide a route for

proving the dictionary of the dyonic instantons, from that of the wavy instanton strings.

3. Algebraic curves capturing ADHM data

3.1 A conjecture

The central concept underlying the analysis in the previous section is that the ADHM data,

once it is given, produces a real algebraic curve. This is very intriguing in the sense that

ADHM data are generally difficult to interpret, especially when the number of instantons

is large. Another difficulty is due to the presence of the gauge orbit among the ADHM

data. In view of this, the algebraic real curves (loops) given by the Higgs zero may be a

good and effective alternative to capture the information of the instantons.1

One may hope that the correspondence is one-to-one and thus the curves may capture

all the information of the instantons. (For monopoles, certainly this kind of correspondence

4For the dyonic instantons studied in the previous subsections, this identification has not been clear,

and that is why we studied the angular momentum problem in details. Here the identification is clear.
1Related references along a similar spirit can be found in [22].
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ADHM data

Algebraic real curves

X = 0
Higgs zero φ = 0

Yang-Mills instantons

?

Figure 7: Correspondence between ADHM data and curves by Higgs zero.

exists: spectral curves of monopoles [19], which are Riemann surfaces.) We know that for

a given instanton configuration, it defines a Higgs zero, thus the map is at least on-to,

for appropriately defined set of algebraic curves (recall that coefficients of the polynomial

are related, as seen in section 2.3). In general, the requirement of adjoint φ = 0 consists

of three real equations, while we have four spatial coordinates xµ, thus resulting in a one

dimensional curve. The concept is depicted in figure 7.

Unfortunately, one can find some counter-examples which shows that the correspon-

dence is not one-to-one. Let us first consider the circle. It is expected that the circular

Higgs zero locus appears for any instanton number, there appears to be degeneracy to one

another. However, this degeneracy can be lifted if one varies the instanton numbers while

keeping fixed all the other parameters involved:2 the electric charge Qe and the asymptotic

Higgs vev q. We must note here that the rotation in the plane on which the circle lies

does not change the circle. But this rotation changes the instanton profile, as seen in the

previous section. One cannot lift this rotationary degeneracy.

Another counter-example already appears in the case of the two instantons. Let us

consider ’t Hooft ansatz for the instantons. As briefly mentioned before, the Higgs zero

corresponding to the ’t Hooft solutions is just two points and not forming a curve [4].

However, we know that the ’t Hooft instantons have size moduli parameters si in addition

to the location of the instantons. This information of the size is not reflected in the profile

of the curve. Even when the curve does not shrink to points, it is insensitive to the overall

scaling of si.

Even with these counter-examples, it is still interesting to pursue this direction. Cer-

tainly the Higgs zero is a gauge-invariant object, and is simple enough because it is given

by just algebraic polynomials. Obviously, location of each instanton is indicated by the

Higgs zero, which is certainly true for the probe of the adjoint scalar field.

2This can be explicitly seen in the picture of the supertubes, since for fixed F1 charges, the D0-brane

charge per a unit length along the supertube isometry (which, if multiplied by the length between the

D4-branes, is the instanton number) is proportional to the enclosed area of the supertube cross-section. See

section 4 for the detailed correspondence to the D-brane pictures.
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In the following, we first count the degree of the polynomial X which defines the Higgs

zero, and show that the degree is bounded by the instanton number κ. Therefore, when a

closed curve is given in terms of a polynomial (as usual for algebraic curves), the degree of

it gives the minimal number of instantons necessary for reproducing the curve as a Higgs

zero. This is analogous to the spectral curves of monopoles [19], where the degree of the

polynomial defining the spectral curve (which is related to the genus of the corresponding

Riemann surface) is determined by monopole number. To reproduce any curve which is not

expressed by any polynomial, we need infinite number of instantons. The importance of

this interesting limit κ → ∞ has been pointed out in [20]. Furthermore, we must note that

some polynomials may have no corresponding ADHM data. We have seen in the previous

section that some coefficients in X are related to each other.

We shall show in section 3.3 that when some of the instantons are located far away

from the rest, the curves given by X = 0 splits into two parts. This splitting property

should be endowed with the algebraic curves, because naively the location of the instantons

is specified by the curves.

3.2 Degree of algebraic curve and instanton number

3.2.1 JNR instantons

To see how the degree of the polynomial X is related to the data of the instantons appearing

in the ADHM construction, we first consider the JNR κ instantons. A similar counting

for the full ADHM construction will be given later. The ADHM construction of the Higgs

solution [3, 4, 21] for the JNR ansatz (2.1) is given by equation (3.8) of [4] as

φ(x) =
1

sΣHJNR(x)

[
Z̄(x)qZ(x) + Q(x)

]
(3.1)

with q = qiσi and sΣ =
∑κ

i=0 si. In order for φ to be constant at spatial infinity, the degree

of polynomial Z̄(x)qZ(x) + Q(x) should be same as that of deg(HJNR) = −2. Indeed, the

definition of Z and Q are given [4] by

Z(x) =
κ∑

i=0

siyiµ

|yi|2
eµ, Q(x) = s4

0Λ
T

{
1

Y
− 1

y0

}
KpK

{
1

Ȳ
− 1

ȳ0

}
Λ. (3.2)

Clearly the degrees of Z̄qZ and Q are −2. Here we have defined a representation of

the quaternion as eµ ≡ (i~σ, 12×2) and yi = (xµ − aiµ)eµ. p is a quaternionic κ × κ

matrix which is determined by equation (3.3) in [4]. Y is a quaternionic diagonal ma-

trix Y = diag (y1, y2, · · · , yκ). Λ is a row vector with κ real constant components,

Λ =
(
s2
1/s

2
0, s

2
2/s

2
0, · · · , s2

κ/s2
0

)
, and K is a constant matrix taking value in GL(κ,C). See [4]

for the detailed derivation.

Note that all of HJNR(x), Z̄(x)qZ(x) and Q(x) have second order divergence at xµ =

aiµ, although φ(x) given in (3.1) is regular all over the space. Now we want to derive a

polynomial determining the zero of the adjoint field φ. Obviously the pre-factor 1/HJNR(x)

is unrelated to the polynomial and note that Z̄qZ+Q has the negative degree as mentioned
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above. The negative degree can be turned into positive by pulling out an overall factor

Π(x) ≡ (|y0|2|y1|2 · · · |yκ|2)−1 from Z̄qZ + Q as

φ(x) =
Π(x)

sΣHJNR(x)
XJNR(x), XJNR(x) ≡ Π−1(x)

[
Z̄(x)qZ(x) + Q(x)

]
. (3.3)

XJNR(x) is an ordinary polynomial whose degree is

deg(XJNR) = 2(κ + 1) − 2 = 2κ. (3.4)

To be precise, the factor Π−1 (which is proportional to the unity in the quaternion) should

be inserted between Z and Z̄, and between
{
Y −1 − y−1

0

}
and

{
Ȳ −1 − ȳ0

−1
}

in Q, and

in order to cancel the divergence in those terms, we need the relation [yi, q] = 0 and

[yi,KpK] = 0. The latter equation is satisfied since KpK is the unity in the quaternion [4],

but the former is in general not satisfied. Hence we assume q1 = q2 = 0 for simplicity, and

use the fact that putting yi1 = yi2 = 0 consistently solves the constraint of vanishing σ1

and σ2 components in φ. Thus the curve is on the plane spanned by x3 and x4, and we

end up with a single constraint XJNR(x3, x4) = 0 coming from the σ3 component of the

equation φ = 0.

Note that XJNR(x) agrees with X(x) in equation (2.2) for the κ = 2 instantons.3 For

the case of one instanton which is always expressed by the ’t Hooft ansatz, the locus of the

Higgs zero is known to be a point [3] which can be written as
∑4

µ=1(xµ − aµ)2 = 0. This

polynomial is of degree 2, ensuring the above result.

3.2.2 Generic instantons

For κ ≥ 3, the JNR ansatz does not cover all the moduli space of the instantons. Here we

are going to show a less stringent bound deg(X) ≤ 4κ for general configurations with κ

instantons.

The ADHM construction of the Higgs solution [3, 4, 21] is given, for example by

equation (3.2) of [4], as a quaternionic relation4

φ = v†

(
q 0

0 p

)
v . (3.5)

The vector v is a solution to the zero mode equation ∆†v = 0 where ∆ is the Dirac operator

matrix whose elements are quaternions,

∆ =

(
Λ

Ω − x1κ×κ

)
(3.6)

3For two instantons, there is an interesting geometrical realization of the ADHM data [23], whose relation

to X was discussed in [4].
4Interestingly, this formula (3.5) has a natural interpretation in terms of the tachyon condensation of the

D-branes [6]: the matrix p comes from the massless excitation of a string on D-branes and anti-D4-branes

which are to be annihilated. These are separated from each other, and the location is specified by the

eigenvalues of p.
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where a quaternion x is defined as before, x ≡ x11 + x2i + x3j + x4k. Ω is a κ× κ matrix.

Solving the zero mode equation ∆†v = 0 formally,

v =

(
1

(Ω† − x∗1κ×κ)−1Λ†

)
N . (3.7)

This is a (κ+1)×1 matrix (a vector) whose elements are quaternions. The pre-factor N is

the normalization of the vector which is determined by requiring v†v = 1 as a quaternion

equation. Using the zero modes, we obtain the Higgs field as

φ = N ∗
(
q + Λ(Ω − x1κ×κ)−1p(Ω† − x∗1κ×κ)−1Λ†

)
N . (3.8)

To see the Higgs zero, we may just drop the normalization N and N ∗.5 Let us evaluate the

degree of X. For this we use the previous (Pauli matrix) representation of the quaternion.

Note that in this complex representation, the size of all the quaternion matrices Ω, Λ, q

and p is doubled. Then the equation φ = 0 is written in a polynomial form as

X ≡ q|det(Ω − xµeµ ⊗ 1κ×κ)|2 + ΛY pY †Λ† = 0. (3.9)

Here Yij is the cofactor matrix element,

[
(Ω − xµeµ ⊗ 1κ×κ)−1

]
ij

= Yij/det(Ω − xµeµ ⊗ 1κ×κ). (3.10)

Using the known degrees deg(Y ) = 2κ − 1, deg(det(Ω − xµeµ ⊗ 1κ×κ)) = 2κ, it is shown

that the degree of the polynomial function X is at most

deg(X) ≤ 4κ. (3.11)

This degree can be smaller than 4κ, as we haven’t imposed the ADHM equation for the

ADHM data and the on-shell constraint for p. Once these constraints are imposed, the

function X may be factorized and the degree of X may become less than 4κ. In fact, the

earlier JNR counting which is equivalent to the ADHM construction for κ ≤ 2 gives the

degree 2κ (3.4) which is below this general bound (3.11).

3.3 Splitting of the curves

We anticipated that the above analysis with the JNR ansatz exhibits the following splitting

property of the algebraic curves for well-separated instantons. Here we shall show that when

some of the parameters ai are well separated from the rest, then the algebraic curve defined

by the polynomial X splits into two closed curves.

Let us divide the ADHM data {aiµ} to two sets, S(1) ≡ {ap| p = 0, · · · , s} and

S(2) ≡ {ar| r = s + 1, · · · , κ}, and assume that two sets are far from each other,

|ap − ar|2 ∼ l , |ap1
− ap2

|2 ¿ l , |ar1
− ar2

|2 ¿ l , (3.12)

for fixed large l which is the distance between the two sets. When x is close to the first

set S(1), |yr| (r = s + 1, · · · , κ) is very large and approximated by l, thus its dependence

5We here assumed that the normalization N does not vanish anywhere.
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in Z and Q drops out since yk appears there as 1/yr ∼ 1/l → 0. We arrive at an algebraic

curve X(1) = 0 written only by the elements ap of the first set S(1). It gives a curve sitting

around the first set S(1). Its precise expression is

X ∼ l2(κ−s)X(1)(yp) (3.13)

where X(1) is of degree 2s. On the other hand, when x is close to the second set, we obtain

a curve X(2) = 0 written only by ar (r = s+1, · · · , κ) in the same way. The curve appears

at the region near the second set S(2), and X ∼ l2(s+1)X(2)(yr) where X(2) is of degree

2(κ − s − 1). Therefore, we showed that for large l there appears two separate curves,

X(1)(yp) = 0 and X(2)(yr) = 0. This is what is expected as a property of the algebraic

curves probing the instantons: when sets of instantons are far away from each other then

the curve splits.

It may be interesting if one could show actual factorization of the algebraic curve in

the limit. One may say that (3.13) itself is already the “factorization.” The most natural

polynomial which satisfies (3.13) in the limit l → ∞ (and similar expression for X(2)) may

be just the product, X = X(1)(yp)X
(2)(yr), but note that the degree of this product is

2κ − 2 which is not what one expects.6

As an extreme example, consider the case s + 1 = κ. We take the limit |aκ − ap| ∼ l

very large (p = 0, 1, · · · , κ− 1) and keep all si fixed. In this limit, yκ goes to infinity when

we consider x taking values just around a0, · · · , aκ−1. As before, we obtain X ∼ l2X(1)(yp)

where p = 0, 1, · · · , κ − 1. Note that in this case, the Higgs zero locus X = 0 does

not give an additional isolated point xµ = aκµ. When |yκ| is small, the other |yp| ∼ l

(p = 0, 1, · · · , κ− 1) is very large, so all the |yp| dependence drops off in Z and Q. Then Z

and Q become a function of only yκ. In this limit in general, vanishing of X does not give

any solution.

This appears to give a contradiction since this well-separated aκ would have been

identified with a single well-separated instanton. But this is not the case. Note that the

JNR ansatz includes κ + 1 locations (ai, i = 0, 1, · · · , κ) in the space, hence the relation

between the aiµ and the location of the κ instantons remains obscure. However, for the ’t

Hooft instanton which can be obtained from the JNR ansatz by taking s0 ∼ |a0µ|2 → ∞,

this relation between ai (i = 1, 2, · · · , κ) and the location of the instantons is apparent.

The limit to the ’t Hooft instantons uses the scaling of s0 which we did not consider in the

above, so there is no contradiction.7

4. Conclusion and discussions

In this paper, we considered the identification between the supertube cross-section and

Higgs zero locus of the dyonic instantons, and then performed a field theoretical calculation

6However, this kind of factorization can be proven for simple polynomials. For example, suppose we

have a polynomial X(t) with degree 2, and two constants t1 and t2 with t1 − t2 ≡ l large. And suppose

that the polynomial is approximated as X ∼ l(t − t1) for t ∼ t1 and X ∼ −l(t − t2) for t ∼ t2. Then the

only possible such polynomial is X = (t − t1)(t − t2).
7For κ = 1, the ’t Hooft instanton is equivalent to the JNR instanton. If one considers the limit

|a1µ − a0µ|2 → ∞ in the notation of the JNR ansatz, one obtains just a large-size single instanton.
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for the supertube angular momentum (2.6). We showed that as we fixed the electric charge

Qe and the instanton number κ of the system, the angular momentum is maximized at

the circular loop (section 2.4). This variational problem is closely related to the one for

the supertube in string theory, where one can show that for fixed D0 and F1 charges, the

angular momentum of the supertube is maximized at the circular cross-section [9]. We

have shown in section 2.2 that, with our proposed dictionary between the charges (2.13)

and (2.14), the result of the field theoretical variational problem in section 2.4, based on

the identification of the cross-section of the supertube and the Higgs zero locus of the

dyonic instanton, can be consistently understood. This in turn, is a strong support for the

identification of the cross-section of the supertubes and the Higgs zero locus of the dyonic

instantons. As a T-dual version of this identification, in section 2.5 we also studied the

correspondence between the D-helices/supercurves and the wavy instanton string solutions

in the 1+5 dimensional SU(2) Yang-Mills theory. The instanton strings can be located

without any ambiguity, and the identification of the location with the D-helix/supercurve

shape is very natural. In this case, we have given a proof of the dictionary of the charges

as a functional of the shape.

The conjecture on the correspondence between the ADHM data and the real algebraic

curves studied in section 3 is still preliminary, in the sense that we need to give the precise

definition of the correspondence. Although the rough correspondence on the degrees of the

polynomial and the splitting property has been clarified, we still need to specify which set

of polynomials should be treated for giving the on-to map from the set of instanton moduli

space. However, it is intriguing that the data of the instantons can be understood in a

graphical manner by the algebraic curves, this has been provided through the identification

of the dyonic instantons and the supertubes ending on the D4-branes. Moreover, our results

in section 3 provided the quantitative evidence that, in the large instanton number limit,

we can reproduce algebraic curve of arbitrary shape by the Higgs zero locus, echoing the

conjecture made in [20].

As a remark, consider the maximum value of the angular momentum (2.6). Let us

compare it with the value expected from the D-brane picture. For this purpose, we need

the dictionary of the charges in the two pictures given in section 2.2. For κ = 2, the

dictionary (2.13) leads in particular to the following equation

2π

TD2
QD0QF1 =

Qe

4π(q3)2
(4.1)

with TD2 the tension of the D2-brane. In fact the combination appearing in the left hand

side of the equation is the precise upper bound for the angular momentum LD2 of the

supertube, as shown in [9, 12].8 For a circular shape, we use the data (2.28) to evaluate

the electric charge as Qe = 16π2R2(q3)2, with which the upper-bound for the angular

momentum (4.1) is

L
(max)
supertube = 4πR2 . (4.2)

8Note that we have defined the angular momentum as (2.6) which is different from the definition in [12],

by a factor.
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On the other hand, what we showed in this paper is that the following upper bound exists

for κ = 2 instantons

L ≤ 2π

√
13 − 1

6
R2 (< L

(max)
supertube) . (4.3)

Clearly it lies below the bound expected from the supertube, (4.2). Let us discuss the

reason for this. In [9], the authors showed (4.2) is satisfied by the circular supertubes with

uniform electric QF1 and magnetic QD0 charge densities. We can therefore conclude from

the general analysis in [9] that the field theory configuration considered here should at

most correspond to a circular supertube with non-uniform charge distributions. In fact,

the instanton charge distribution can be found non-uniform along the closed curve given

by the zero of the Higgs field. This suggests that the saturation of the bound given by the

supertube is possible only in the limit of large instanton number.

Let us also comment on the definition of the angular momentum of the dyonic in-

stantons, which is generally different from that of supertube. There are in fact two other

possible ways to define the angular momentum of the dyonic instantons. One is defined

directly by the four dimensional integral (2.7) [4, 17]. The other one is defined through the

ADHM data. One can think of the dyonic instanton as a time-dependent ADHM data, since

the charges and the mass of the dyonic instanton can be understood as time-dependent so-

lution of a massive sigma model whose target space is the ADHM moduli space [3]. This is

in accord with the fact that the ADHM data corresponds to the D0-branes, and the super-

tube consists of the “running” D0-branes. Obviously, these two definitions differ from our

definition of the angular momentum L (2.6) which comes from supertubes. For example,

these two other definitions are non-vanishing even for one instanton, while ours vanishes

because the Higgs zero becomes a point. It is interesting to see how these three definitions

are different from one another in more details. We expect from the D-brane perspective, for

large instanton numbers [20] they coincide with one another. This is also what one would

naturally expect for the identification between dyonic instantons and supertubes to be un-

equivocal. The T-dual example, the wavy instanton strings and the D-helices/supercurves,

may give some clearer insights, because for those the dictionary is already proven and the

identification is apparent.
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